Pipe Cleaning Nozzles

[Features]

- Cleaning inside pipes and tubes, moving itself by means of spraying solid stream jets in different directions as driving force.
- High impact jets effectively remove scale and dirt inside pipes.

[Standard pressure]

Not specified (RSP series is a made-to-order nozzle)

[Applications]

Cleaning inside pipes (drains, distribution pipes), Removing scale and dirt inside tubes of heat exchangers and cooling machines

RSI	P serie
RSP series	
Made of metal, one-piece structure.	-
S303Optional material: S420J2	_
	RSP series • Made of metal, one-piece structure. • S303

Pipe conn.		Mass (m)			
Pipe conn. size	L	Н	øD	N	Mass (g)
R1/8	26	10.5	12	7	14
R1/4	34	14	17	9	30
R3/8	38	16	19	11	48
R1/2	42	22	25	14	88

[Note] Appearance and dimensions may differ slightly depending on materials and nozzle codes.

HOW TO SELECT RSP SERIES

① Pipe Connection Size

Refer to the table to select the pipe connection size suitable for the spray capacity you require.

Pipe	Max. spray capacity by pipe connection size (ℓ /min)									
conn. size	3 MPa	5 MPa	7 MPa	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa		
R1/8	24	31	37	44	54	62	70	76		
R1/4	96	124	147	176	216	249	278	305		
R3/8	96	124	147	176	216	249	278	305		
R1/2	105	135	160	191	234	270	302	331		

2 Orifice diameter and the number of orifices

Refer to the table to select the orifice diameter and the number of orifices.

Orifice	Spray capacity per one orifice (ℓ/min)									
diameter (ømm)	3 MPa	5 MPa	7 MPa	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa		
0.6	0.7	0.9	1.1	1.3	1.6	1.9	2.1	2.3		
0.7	1.0	1.3	1.5	1.8	2.2	2.5	2.8	3.1		
0.8	1.3	1.7	2.0	2.3	2.9	3.3	3.7	4.1		
0.9	1.6	2.1	2.5	3.0	3.6	4.2	4.7	5.1		
1.0	2.0	2.6	3.1	3.7	4.5	5.2	5.8	6.4		
1.2	2.9	3.7	4.4	5.3	6.5	7.5	8.3	9.1		
1.5	4.5	5.8	6.9	8.2	10.1	11.7	13.0	14.3		
2.0	8.0	10.4	12.3	14.7	18.0	20.7	23.2	25.4		

③ Spray direction and the number of orifices in each direction

Refer to the table and specify the desired number of orifices in each direction (b, C), and (d).

Pipe conn. size	Max. number of orifices in the direction of $(b, [c)+d)$ (see Remarks)									
	ø0.6	ø0.7	ø0.8	ø1.0	ø1 . 2	ø1 . 5	ø2.0			
R1/8	6	6	6	6	4	—	—			
R1/4	10	10	10	10	8	8	—			
R3/8	10	10	10	10	8	8	6			
R1/2	12	10	10	10	8	8	6			

Remarks

- The number of orifices in direction (b) must not exceed the value in the above table.
- The total number of orifices in directions (c) and (d) must not exceed the value in the above table.
- Odd numbers, except three (3), are not recommended. Seven (7) is not acceptable.
- The numbers of orifices for ⓒ and ⓓ should be the same or one should be a multiple number of the other.

For the other combinations, please contact us.

Note

In case the numbers for ⓒ and ⓓ have to be 6 and 4, it can be made but only with orifices for ⓒ and ⓓ unequally-spaced as shown in the sketch below.

(ⓒ and ⓓ orifices <u>unequally</u>-spaced) Available

